264 research outputs found

    Towards Optimal Diagnosis of Type II Germ Cell Tumors

    Get PDF
    The aim of the work described in this thesis is to improve the understanding of the pathobiology of testicular cancer (typ

    Subdivision Shell Elements with Anisotropic Growth

    Full text link
    A thin shell finite element approach based on Loop's subdivision surfaces is proposed, capable of dealing with large deformations and anisotropic growth. To this end, the Kirchhoff-Love theory of thin shells is derived and extended to allow for arbitrary in-plane growth. The simplicity and computational efficiency of the subdivision thin shell elements is outstanding, which is demonstrated on a few standard loading benchmarks. With this powerful tool at hand, we demonstrate the broad range of possible applications by numerical solution of several growth scenarios, ranging from the uniform growth of a sphere, to boundary instabilities induced by large anisotropic growth. Finally, it is shown that the problem of a slowly and uniformly growing sheet confined in a fixed hollow sphere is equivalent to the inverse process where a sheet of fixed size is slowly crumpled in a shrinking hollow sphere in the frictionless, quasi-static, elastic limit.Comment: 20 pages, 12 figures, 1 tabl

    Analysis of the “Sonar Hopf” Cochlea

    Get PDF
    The “Sonar Hopf” cochlea is a recently much advertised engineering design of an auditory sensor. We analyze this approach based on a recent description by its inventors Hamilton, Tapson, Rapson, Jin, and van Schaik, in which they exhibit the “Sonar Hopf” model, its analysis and the corresponding hardware in detail. We identify problems in the theoretical formulation of the model and critically examine the claimed coherence between the described model, the measurements from the implemented hardware, and biological data

    Molecular determinants of treatment response in human germ cell tumors

    Get PDF
    PURPOSE: Germ cell tumors (GCTs) are highly sensitive to cisplatin-based chemotherapy. This feature is unexplained, as is the intrinsic chemotherapy resistance of mature teratomas and the resistant phenotype of a minority of refractory GCTs. Various cellular pathways may influence the efficacy of chemotherapy. Their impact has not been investigated in a comprehensive study of tumor samples from clinically defined subgroups of GCT patients. EXPERIMENTAL DESIGN: We investigated proteins involved in regulation of apoptosis (p53, BAX, BCL-2, and BCL-X(L)), cell cycle control [p21 and retinoblastoma protein (RB)], and drug export and inactivation [P-glycoprotein, multidrug resistance-associated protein (MRP) 1, MRP2, breast cancer resistance protein, lung resistance protein, metallothionein, and glutathione S-transferase pi] immunohistochemically in samples of unselected GCT patients (n = 20), patients with advanced metastatic disease in continuous remission after first-line chemotherapy (n = 12), and chemotherapy-refractory patients (n = 24). Mature teratoma components (n = 10) within tumor samples from all groups were analyzed separately. The apoptotic index was studied by terminal deoxynucleotidyl transferase-mediated nick end labeling assay. RESULTS: Invasive GCTs of all groups showed a correlation between wild-type p53 and apoptotic index (r(s) = 0.66; P < 0.001). The levels of the antiapoptotic proteins BCL-2 and BCL-X(L) were generally low. p21 was hardly detectable and did not correlate with p53 (r(s) = 0.29; P = 0.07). No significant differences among the three patient groups were identified regarding any of the investigated parameters (all Ps were >0.08), even though only individual samples from chemotherapy-resistant cases showed a strong staining for MRP2 and GSTpi. In contrast to other components, mature teratomas showed an intense p21 and RB staining and were mostly positive for MRP2, lung resistance protein, and GSTpi. CONCLUSIONS: Our results indicate a multifactorial basis for the chemosensitivity of GCTs with lack of transporters for cisplatin, of antiapoptotic BCL-2 family members, of p21 induction by p53, and of RB and an intact apoptotic cascade downstream of p53. These findings suggest a preference for apoptosis over cell cycle arrest after up-regulation of p53. None of the examined parameters offers a general explanation for the chemotherapy-resistant phenotype of refractory tumors. The up-regulation of various factors interfering with chemotherapy efficacy and ability for a p21-induced cell cycle arrest may explain the intrinsic chemotherapy resistance of mature teratomas

    DICER1 RNase IIIb domain mutations are infrequent in testicular germ cell tumours

    Get PDF
    Background: Testicular Germ Cell Tumours (TGCT) are the most frequently occurring malignancy in males from 15-45 years of age. They are derived from germ cells unable to undergo physiological maturation, although the genetic basis for this is poorly understood. A recent report showed that mutations in the RNase IIIb domain of DICER1, a micro-RNA (miRNA) processing enzyme, are common in non-epithelial ovarian cancers. DICER1 mutations were found in 60% of Sertoli-Leydig cell tumours, clustering in four codons encoding metal-binding sites. Additional analysis of 14 TGCT DNA samples identified one case that also contained a mutation at one of these sites. Findings. A number of previous studies have shown that DICER1 mutations are found in Q) within the RNase IIIb domain in one TGCT sample, which was predicted to disturb DICER1 function. Conclusion: Overall our findings suggest a mutation frequency in TGCTs of ∼1%. We conclude therefore that hot-spot mutations, frequently seen in Sertoli-Leydig cell tumours, are not common in TGCTs

    Cripto: Expression, epigenetic regulation and potential diagnostic use in testicular germ cell tumors

    Get PDF
    Type II germ cell tumors arise after puberty from a germ cell that was incorrectly programmed during fetal life. Failure of testicular germ cells to properly differentiate can lead to the formation of germ cell neoplasia in situ of the testis; this precursor cell invariably gives rise to germ cell cancer after puberty. The Nodal co-receptor Cripto is expressed transiently during normal germ cell development and is ectopically expressed in non-seminomas that arise from germ cell neoplasia in situ, suggesting that its aberrant expression may underlie germ cell dysregulation and hence germ cell cancer. Here we investigated methylation of the Cripto promoter in mouse germ cells and human germ cell cancer and correlated this with the level of CRIPTO protein expression. We found hypomethylation of the CRIPTO promoter in undifferentiated fetal germ cells, embryonal carcinoma and seminomas, but hypermethylation in differentiated fetal germ cells and the differentiated types of non-seminomas. CRIPTO protein was strongly expressed in germ cell neoplasia in situ along with embryonal carcinoma, yolk sac tumor and seminomas. Further, cleaved CRIPTO was detected in media from seminoma and embryonal carcinoma cell lines, suggesting that cleaved CRIPTO may provide diagnostic indication of germ cell cancer. Accordingly, CRIPTO was detectable in serum from 6/15 patients with embryonal carcinoma, 5/15 patients with seminoma, 4/5 patients with germ cell neoplasia in situ cells only and in 1/15 control patients. These findings suggest that CRIPTO expression may be a useful serological marker for diagnostic and/or prognostic purposes during germ cell cancer management

    Specific detection of OCT3/4 isoform A/B/B1 expression in solid (germ cell) tumours and cell lines: confirmation of OCT3/4 specificity for germ cell tumours

    Get PDF
    BACKGROUND: OCT3/4 (POU5F1) is an established diagnostic immunohistochemical marker for specific histological variants of human malignant germ cell tumours (GCTs), including the seminomatous types and the stem cell component of non-seminomas, known as embryonal carcinoma. OCT3/4 is crucial for the regulation of pluripotency and the self-renewal of normal embryonic stem-and germ cells. Detection of expression of this transcription factor is complicated by the existence of multiple pseudogenes and isoforms. Various claims have been made about OCT3/4 expression in non-GCTs, possibly related to using nonspecific detection methods. False-positive findings undermine the applicability of OCT3/4 as a specific diagnostic tool in a clinical setting. In addition, false-positive findings could result in misinterpretation of pluripotency regulation in solid somatic cancers and their stem cells. Of the three identified isoforms - OCT4A, OCT4B and OCT4B1 - only OCT4A proved to regulate pluripotency. Up until now, no convincing nuclear OCT4A protein expression has been shown in somatic cancers or tissues. METHODS: This study investigates expression of the various OCT3/4 isoforms in GCTs (both differentiated and undifferentiated) and somatic (non-germ cell) cancers, including representative cell lines and xenografts. RESULTS: Using specific methods, OCT4A and OCT4B1 are shown to be preferentially expressed in undifferentiated GCTs. The OCT4B variant shows no difference in expression between GCTs (either differentiated or undifferentiated) and somatic cancers. In spite of the presence of OCT4A mRNA in somatic cancer-derived cell lines, no OCT3/4 protein is detected. Significant positive correlations between all isoforms of OCT3/4 were identified in both tumours with and without a known stem cell component, possibly indicating synergistic roles of these isoforms. CONCLUSION: This study confirms that OCT4A protein only appears in seminomatous GCTs, embryonal carcinoma and representative cell lines. Furthermore, it emphasises that in order to correctly assess the presence of functional OCT3/4, both isoform specific mRNA and protein detection are required. British Journal of Cancer (2011) 105, 854-863. doi: 10.1038/bjc.2011.270 www.bjcancer.com Published online 16 August 2011 (C) 2011 Cancer Research U
    corecore